CT影像诊断新冠肺炎

分享给好友

2020-04-30 12:00:00
开始提交

2020-05-30 20:00:00
最终提交结束

自由训练

报名参赛
  • 赛事介绍
  • 竞赛排行榜
  • 自由练习榜单
  • 讨论(217)
  • 学习资源

大赛简介

自2月12日起,湖北首次将临床诊断病例数纳入新增数据,在《新型冠状病毒感染的肺炎诊疗方案(试行第五版)》(以下简称:《第五版新冠肺炎诊疗方案》)中提到将”疑似病例中具有肺炎影像学特征者“纳入临床诊断病例标准,将“肺部影像学显示炎症明显吸收”重新回归到解除隔离和出院标准中,不难看出影像学在此次新冠肺炎中的诊断中起着至关重要的作用。

人工智能技术在本次的抗疫战争中也发挥着自己的优势,通过深度学习技术,对医学影像进行分类识别,协助诊断专家完成高效率、高准确率的诊断任务。

本赛题是一个图像二分类任务,基于2019年新冠肺炎CT医学影像数据,要求参赛者搭建算法模型,通过CT医学影像诊断患者是否感染新冠肺炎。对医学领域的人工智能技术落地研究有着重要意义。

赛事主题和数据说明

赛题描述

本赛题是一个图像二分类任务,基于2019年新冠肺炎CT医学影像数据,要求参赛者搭建算法模型,通过CT医学影像诊断患者是否感染新冠肺炎。对医学领域的人工智能技术落地研究有着重要意义。

数据描述

由于需要提交代码作品在云端进行训练,参赛数据集不对外开放。仅提供调试数据。

字段说明:

文件名 字段名称 字段类型 备注 样例
train.csv image_path str 图片的相对路径 ./data/input/COVIDClassification/image/0.png
label int 标签 0

评审标准

算法输入输出格式

系统评估时,要求参赛者必须在predict方法中接收到输入和评估返回的结果输出,格式如下所示。

输入字段:

{
    "image_path": ".\/data\/input\/COVIDClassification\/image\/0.png"
}

输出字段:

{
    "label": 0
}

评审指标说明

  • 准确率(Accuracy):对于给定的测试数据集,预测正确的样本数与实际总样本数之比
  • True,表示预测正确的样本数数量
  • Total Number of Samples,表示实际总样本数数量
  • 计算公式如下:

挑战者大赛 官方交流群

我的记录

你还没有任何提交记录喔...

  • 参赛流程
  • 常见问题

第一步:参赛选手从FlyAI官网选择比赛报名,需下载样例代码

下载的项目中不包含数据集,运行main.py会自动下载调试数据集

本地调试根据不同数据集会提供10%~100%数据,全量数据提交到GPU后会自动更新替换

下载样例代码,解压后在样例代码上编写自己的模型代码,压缩后再在上传代码位置进行上传,就可以查看自己得分。

第二步:本地代码调试

本地配置Python3.5以上的运行环境,并安装项目运行所需的Python依赖包 app.json是项目的配置文件

在main.py中编写神经网络,没有框架限制

在prediction.py测试模型是否评估成功

main.py中需在class Main(FlyAI) 类中实现自己的训练过程

第三步:提交到GPU训练,保存模型

本地调试完成之后,提交代码到GPU,在全量数据上训练模型,保存最优模型。

提交GPU的方式有:网站在线提交。

第四步:评估模型,获取奖金,实时提现

GPU训练完成后,会调用prediction.py中的predict方法进行评估,并给出最后得分

高分的参赛选手,可实时获取奖金,通过微信提现