X光片检测患者肺炎

分享给好友

2020-02-05 12:00:00
开始提交

2020-03-06 20:00:00
最终提交结束

自由训练

奖金池 ¥ 3000
报名参赛
  • 赛事介绍
  • 竞赛排行榜
  • 讨论(17)
  • 学习资源

大赛简介

此刻,武汉疫情还在持续,为战斗在疫情一线的所有医护人员祈福、加油!在家关心疫情的同时,可以通过参加算法竞赛提升自己的算法能力和赢取高额奖金

武汉肺炎主要发病情况为新型冠状病毒(2019-nCoV)感染肺部导致人体呼吸衰竭。基于对肺部感染检测的技术研究,可通过人工智能技术对医学影像-X光片进行患病情况检测,有效提升确诊准确率和效率

本赛题主要是对肺部X光片患病结果进行分类,共4个患病类别,数据集划分比例为6:2:2,可使用CSV文件和FlyAI框架两种提交方式参赛。参赛者需要通过优化模型来对肺部X光片进行精确的分类

参赛须知

参赛时间:2020.02.05 12:00:00-2020.03.06 20:00:00

参赛方式

  • 下载FlyAI样例模版进行本地调试并提交到云端使用免费GPU进行模型训练获得最终成绩得分。

参赛选手说明

  • 参赛人员身份信息需保证真实、有效,大赛主办方仅将个人信息用于赛事数据授权及颁奖使用
  • 欢迎海内外的在校学生,算法工程师和所有AI爱好者参与
  • 本次竞赛报名形式:以个人形式本地提交作品线上审核,并且以最终提交算法得分作为唯一有效成绩
  • 在比赛截止日期前,团队中成绩最高分作为本团队的最终成绩
  • 报名成功后请加入FlyAI竞赛交流群,一起学习进步!重要通知也将在群内发布,不要错过哦

比赛作品说明

  • 参赛选手需要配合组委会对比赛作品的有效性与真实性进行验证
  • 不同团队/个人,提交相似结果文件,取消双方所有人员参赛资格
  • 多开小号报名、提交,一经发现将取消参赛资格
  • 禁止使用外部链接下载代码替换本项目代码
  • 比赛过程中,通过脚本获取比赛数据,成绩无效
  • 使用线上测试集进行训练或者使用非官方提供的外部数据进行训练,成绩无效
  • 使用的预训练模型需为FlyAI官方审核通过的模型,使用非官方验证预训练模型,成绩无效
  • 提交的代码具备可解释性并且其它开源框架可复现
  • 所有相似代码将一律不通过审核!!情况多次出现者封号处理
  • 如有发现利用非正常手段作弊行为,奖金一律不发放。之前所获得奖金金额官方有权收回,情节严重者封号处理
  • 提交代码即视为阅读并同意以上比赛作品说明

大赛奖项设置

奖项说明:

奖项设置 获奖人数 奖金额度说明(按最终得分评判)
冠军奖 1人 奖金1,500元 + 1000分钟Tesla-GPU训练时长
亚军奖 1人 奖金800元 + 1000分钟Tesla-GPU训练时长
季军奖 1人 奖金500元 + 1000分钟Tesla-GPU训练时长
参与奖 第4-5名参赛者 参与奖金100元 + 500分钟Tesla-GPU训练时长

奖励获取要求:

  • 比赛结束后如未能达到奖金/奖励获取要求,所获奖品将按照排名顺延至下一位参赛选手
  • 比赛结束后前10名参赛者需提供文档格式赛题解决思路和10分钟以上的PPT答辩视频(FlyAI将提供参考模版)
  • 如果比赛使用CSV方式评测并进入前10名,最终需使用FlyAI模版进行代码复现;复现结果低于CSV评测结果并且误差超过1.0以上无法获得奖金!!

赛事主题和数据说明

赛题描述

武汉肺炎主要发病情况为新型冠状病毒(2019-nCoV)感染肺部导致人体呼吸衰竭。基于对肺部感染检测的技术研究,可通过人工智能技术对医学影像-X光片进行患病情况检测,有效提升确诊准确率和效率。本赛题可使用CSV文件和FlyAI框架两种提交方式参赛,参赛者需要通过优化模型来对肺部X光片进行精确的分类。

数据描述

由于需要提交代码作品在云端进行训练,参赛数据集不对外开放。仅提供调试数据。

字段说明:

文件名 字段名称 字段类型 备注
image_path string 不为空 图片的相对路径
labels int 大于等于 0, 小于等于 3 图片的对应类别

评审标准

算法输入输出格式

输入字段: image_path,

输出字段: labels,

评审指标说明

  • 奖金获取标准:60<Score
  • 准确率(Accuracy):对于给定的测试数据集,预测正确的样本数与实际总样本数之比
  • True,表示预测正确的样本数数量
  • Total Number of Samples,表示实际总样本数数量
  • 计算公式如下:

比赛常见问题说明

Q:比赛使用什么框架?

  • 比赛支持常用的机器学习和深度学习框架,比如TensorFlow,PyTorch,Keras,Scikit-learn、MXNet等。

Q:怎么参加比赛,需不需要提交CSV文件?

  • FlyAI竞赛平台提供免费云端GPU资源,报名后可以使用自己熟练的框架,修改main.py中的网络结构和processor.py中的数据处理;仅部分赛题支持CSV方式提交,请仔细阅读参赛方式相关内容。

Q:比赛排行榜分数怎么得到的?

  • 参加项目竞赛必须实现 model.py 中的predict_all方法。系统通过该方法,调用模型得出评分。

挑战者大赛 官方交流群

我的记录

你还没有任何提交记录喔...

  • 参赛流程
  • 常见问题

第一步:参赛选手从FlyAI官网选择比赛报名,需下载样例代码

下载的项目中不包含数据集,运行main.py会自动下载调试数据集

本地调试根据不同数据集会提供10%~100%数据,全量数据提交到GPU后会自动更新替换

下载样例代码,解压后在样例代码上编写自己的模型代码,压缩后再在上传代码位置进行上传,就可以查看自己得分。

第二步:本地代码调试

本地配置Python3.5以上的运行环境,并安装项目运行所需的Python依赖包 app.json是项目的配置文件

在main.py中编写神经网络,没有框架限制

在prediction.py测试模型是否评估成功

main.py中需在class Main(FlyAI) 类中实现自己的训练过程

第三步:提交到GPU训练,保存模型

本地调试完成之后,提交代码到GPU,在全量数据上训练模型,保存最优模型。

提交GPU的方式有:网站在线提交。

第四步:评估模型,获取奖金,实时提现

GPU训练完成后,会调用prediction.py中的predict方法进行评估,并给出最后得分

高分的参赛选手,可实时获取奖金,通过微信提现