FlyAI小助手

  • 3

    获得赞
  • 82718

    发布的文章
  • 0

    答辩的项目

Clairaut semi-invariant Riemannian maps to Kähler manifolds

作者: Murat Polat,Kiran Meena

作者邀请

论文作者还没有讲解视频

邀请直播讲解

您已邀请成功, 目前已有 $vue{users_count} 人邀请!

再次邀请

In this paper, we define Clairaut semi-invariant Riemannian map ${F}$ from a Riemannian manifold $(M, g_{M})$ to a Kähler manifold $(N, g_{N}, P)$ with a non-trivial example. We find necessary and sufficient conditions for a curve on the base manifold of semi-invariant Riemannian map to be geodesic. Further, we obtain necessary and sufficient conditions for a semi-invariant Riemannian map to be Clairaut semi-invariant Riemannian map. Moreover, we find necessary and sufficient condition for Clairaut semi-invariant Riemannian map to be totally geodesic. In addition, we find necessary and sufficient condition for the distributions $\bar{D_1}$ and $\bar{D_2}$ of $(ker{F}_\ast)^\bot$ (which are arisen from the definition of Clairaut semi-invariant Riemannian map) to define totally geodesic foliation. Finally, we obtain necessary and sufficient conditions for $(ker{F}_\ast)^\bot$ and base manifold to be locally product manifold $\bar{D_1} \times \bar{D_2}$ and $N_{(range{F}_\ast)} \times N_{(range{F}_\ast)^\bot}$, respectively.

文件下载

论文代码

关联比赛

本作品采用 知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可,转载请附上原文出处链接和本声明。
本文链接地址:https://flyai.com/paper_detail/19081
讨论
500字
表情
发送
删除确认
是否删除该条评论?
取消 删除