Anomalous escape governed by thermal 1/f noise
由热1/f噪声控制的异常逃逸
来自arXiv
2023-04-12 21:57:27
We present an analytic study for subdiffusive escape of overdamped particles out of a cusp-shaped parabolic potential well which are driven by thermal, fractional Gaussian noise with a $1/\omega^{1-\alpha}$ power spectrum. This long-standing challenge becomes mathematically tractable by use of a generalized Langevin dynamics via its corresponding non-Markovian, time-convolutionless master equation: We find that the escape is governed asymptotically by a power law whose exponent depends exponentially on the ratio of barrier height and temperature. This result is in distinct contrast to a description with a corresponding subdiffusive fractional Fokker-Planck approach; thus providing experimentalists an amenable testbed to differentiate between the two escape scenarios.
我们提出了一种过抑制粒子次扩散逸出的解析研究。 在由热驱动的尖点形抛物线势垒之外, 具有$1/omega^{1-α}$功率谱的分数高斯噪声。这 长期存在的挑战通过使用 广义朗之万动力学通过其相应的非马尔科夫, 无时间卷积的主方程:我们发现逃逸是由 由指数依赖于比率的指数的幂定律渐近 障碍物的高度和温度。这一结果与 具有相应次扩散分数Fokker-Planck的描述 方法;从而为实验者提供了一个易于区分的试验台 在两个逃生场景之间。
论文代码
关联比赛
本文链接地址:https://flyai.com/paper_detail/27907