FlyAI小助手

  • 3

    获得赞
  • 85873

    发布的文章
  • 0

    答辩的项目

CodeGen2: Lessons for Training LLMs on Programming and Natural Languages

作者: Erik Nijkamp

作者邀请

论文作者还没有讲解视频

邀请直播讲解

您已邀请成功, 目前已有 $vue{users_count} 人邀请!

再次邀请

Large language models (LLMs) have demonstrated remarkable abilities in representation learning for program synthesis and understanding tasks. The quality of the learned representations appears to be dictated by the neural scaling laws as a function of the number of model parameters and observations, while imposing upper bounds on the model performance by the amount of available data and compute, which is costly. In this study, we attempt to render the training of LLMs for program synthesis more efficient by unifying four key components: (1) model architectures, (2) learning methods, (3) infill sampling, and, (4) data distributions. Specifically, for the model architecture, we attempt to unify encoder and decoder-based models into a single prefix-LM. For learning methods, (i) causal language modeling, (ii) span corruption, (iii) infilling are unified into a simple learning algorithm. For infill sampling, we explore the claim of a "free lunch" hypothesis. For data distributions, the effect of a mixture distribution of programming and natural languages on model performance is explored. We conduct a comprehensive series of empirical experiments on 1B LLMs, for which failures and successes of this exploration are distilled into four lessons. We will provide a final recipe for training and release CodeGen2 models in size 1B, 3.7B, 7B, and, 16B parameters, along with the training framework as open-source: https://github.com/salesforce/CodeGen2.

文件下载
本作品采用 知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可,转载请附上原文出处链接和本声明。
本文链接地址:https://flyai.com/paper_detail/65612
讨论
500字
表情
发送
删除确认
是否删除该条评论?
取消 删除