FlyAI小助手

  • 3

    获得赞
  • 85873

    发布的文章
  • 0

    答辩的项目

Decoding visual brain representations from electroencephalography through Knowledge Distillation and latent diffusion models

作者: Matteo Ferrante,Tommaso Boccato,Stefano Bargione,Nicola Toschi

作者邀请

论文作者还没有讲解视频

邀请直播讲解

您已邀请成功, 目前已有 $vue{users_count} 人邀请!

再次邀请

Decoding visual representations from human brain activity has emerged as a thriving research domain, particularly in the context of brain-computer interfaces. Our study presents an innovative method that employs to classify and reconstruct images from the ImageNet dataset using electroencephalography (EEG) data from subjects that had viewed the images themselves (i.e. "brain decoding"). We analyzed EEG recordings from 6 participants, each exposed to 50 images spanning 40 unique semantic categories. These EEG readings were converted into spectrograms, which were then used to train a convolutional neural network (CNN), integrated with a knowledge distillation procedure based on a pre-trained Contrastive Language-Image Pre-Training (CLIP)-based image classification teacher network. This strategy allowed our model to attain a top-5 accuracy of 80%, significantly outperforming a standard CNN and various RNN-based benchmarks. Additionally, we incorporated an image reconstruction mechanism based on pre-trained latent diffusion models, which allowed us to generate an estimate of the images which had elicited EEG activity. Therefore, our architecture not only decodes images from neural activity but also offers a credible image reconstruction from EEG only, paving the way for e.g. swift, individualized feedback experiments. Our research represents a significant step forward in connecting neural signals with visual cognition.

文件下载

论文代码

关联比赛

本作品采用 知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可,转载请附上原文出处链接和本声明。
本文链接地址:https://flyai.com/paper_detail/73139
讨论
500字
表情
发送
删除确认
是否删除该条评论?
取消 删除